
January 16, 1989
PostScript® Developer Tools & Strategies Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5002

ENCAPSULATED P OSTSCRIPT FILES
Specification
Version 2.0

SC RRIPTTSOP

©1988 Adobe Systems Incorporated. All rights reserved.�2

Copyright © 1988, 1987 by Adobe Systems Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publisher.

PostScript is a registered trademark of and the PostScript logo is a trademark of Adobe Systems
Incorporated. Macintosh is a registered trademark of and QuickDraw is a trademark of Apple Com-
puter, Inc. Microsoft is a registered trademark of Microsoft Corporation.

The information herein is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in
this book. The software described in this book is furnished under license and may only be used or
copied in accordance with the terms of such license.

©1988 Adobe Systems Incorporated. All rights reserved.� 3

ENCAPSULATED P OSTSCRIPT FILES
Specification
Version 2.0

January 16, 1989
PostScript® Developer Tools and Strategies Group

This document specifies the format required for import of Encapsulated PostScript
(EPS) Files into an application. This specification suggests a standard for importing
PostScript language files in all environments, and contains specific information
about both the Macintosh® and MS-DOS environments. This format conforms to
Adobe Systems’ Document Structuring Conventions, Version 2.0.

The rules that should be followed in creating importable PostScript language files
are a subset of the structuring conventions proposed by Adobe Systems Incorporated;
refer to the PostScript Language Reference Manual, Appendix C, and Document
Structuring Conventions, version 2.0, available from Adobe Systems. Files must
also be "well-behaved" in their use of certain PostScript language operators,
manipulation of the graphics state, and manipulation of the PostScript interpreter’s
stacks and any global dictionaries. These conventions are designed to allow
cooperative sharing of files between many systems using the PostScript language.

Fundamentally, an EPS file is a standard PostScript language file with a bitmap
screen preview included optionally in the format. The purpose of an EPS file is to
be included into other document makeup systems as an illustration, and the screen
representation is intended to aid in page composition. The bitmap is normally
discarded when printing, and the PostScript language segment of the file is used
instead. Typically any manipulation of the screen image that is performed by the
user (such as scaling, translating, or rotation on screen) should be tracked by the
page layout application and an appropriate transformation should precede the EPS
file when it is sent to the printer.

1.� EPS FILE FORMAT GUIDELINES

An EPS file should conform to at least Version 2.0 of the Adobe Document
Structuring Conventions. This does not explicitly require any of the structuring
comments to be employed, but if used, they should be in accordance with that
specification. Additionally, an EPS file is required to contain the %%BoundingBox
comment, and is required to be "well-behaved" (see pages 3-4). An EPS file may
optionally contain a bitmap image suitable for WYSIWYG screen display, as
discussed herein.

The structure of an EPS file is marked by PostScript language comments, according
to the PostScript Document Structuring Conventions. These are covered briefly here
for reference. Structuring comment lines must begin with "%!" or "%%" and
terminate with a newline (either return or linefeed) character. EPS file conventions
require that a comment line be no longer than 256 bytes. A comment line may be
continued by beginning the continuation line with "%%+" . The EPS file should
begin with a header of structuring comments, as specified in the PostScript
Structuring Conventions.

SC RRIPTTSOP

©1988 Adobe Systems Incorporated. All rights reserved.�4

2.� REQUIRED PARTICIPATION

In order to support Encapsulated PostScript files effectively, some cooperation is
required on the parts of those who produce EPS files and those who use EPS files
(typically by including them into other documents).

2.1� WHEN PRODUCING EPS FILES

There are certain required comments and several recommended ones that must be
provided in the EPS file. These are detailed in Section 3. The file must also be a
single page (not a multiple-page document) and must be a conforming PostScript
language document. Conformance requirements are mostly detailed here, but for the
full specification, please refer to the Document Structuring Conventions from Adobe
Systems.

2.2� WHEN READING AND USING EPS FILES

When including an EPS file into your document, you should basically think of that
piece of code as having been generated by your program. After all, that is what all
programs (and users) who encounter your print file will think. In particular, you
must find out enough about the file to intelligently make it part of your document.
The only tricky part of this relates to font usage. This is also the most difficult
part of this specification to understand. Basically, you just have to figure out what
the requirements of the illustration are and incorporate them into your own
requirements (pass them downstream). Then all issues of font management are
essentially the same as they were before you included the illustration (and are
beyond the scope of this document).

As long as you don’t remove relevant information from a file, and as long as you
update your global view of font usage and resource requirements to reflect those
that you just imported, the rest is fairly easy. The intent behind the EPS
specification, in fact, is to make the most of cooperation between producers and
consumers of PostScript language files so that neither has to do much, but the
combined advantage is great.

3.� REQUIRED COMMENTS

The first comment in the header (and the first line in the file) should be the version
comment:

%!PS-Adobe-2.0 EPSF-2.0
This indicates to an application that the PostScript language file conforms to this
standard. The version number following the word "Adobe-" indicates the level of
adherence to the standard PostScript Document Structuring Conventions. The
version number following the word "EPSF" indicates the level of EPSF-specific
comments.

The following comment must be present in the header; if it is not present then an
importing application may issue an error message and abort the import:

©1988 Adobe Systems Incorporated. All rights reserved.� 5

%%BoundingBox: LLx LLy URx URy
The values are in the PostScript default user coordinate system, in points (1/72 of an
inch, or 2.835 mm), with the origin at the lower left corner. The
 bounding box
must be expressed in default user coordinate space. This seems to be a big question
among implementors of this specification. Regardless of the coordinate system in
which your application operates, here is a foolproof way of determining the correct
bounding box: print the page, get out a point ruler, and measure first to the lower
left corner, then to the upper right corner, using the lower-left corner of the
physical paper as your origin. This works because it measures the end result (the
marks on the page), and none of the computation matters.

4.� OPTIONAL COMMENTS

The following header comments are strongly recommended in EPS files. They
provide extra information about the file that can be used to identify it on-screen or
when printing.

%%Title: included_document_title
%%Creator: creator_name
%%CreationDate: date_and_time
The %%Creator , %%Title , and %%CreationDate comments may be used by an
application or spooler to provide human-readable information about a document, or
to display the file name and creator on the screen if no bitmapped screen
representation was included in the EPS file.

%%EndComments
This comment indicates an explicit end to the header comments, as specified in the
structuring conventions.

4.1� HOW TO USE THESE COMMENTS (PHILOSOPHY)
All of the comments in EPS files provide information of some sort or another.
Exactly how you use this information is up to you, but you are encouraged not to
reduce the amount of information in a file (when you import it or include it, for
example) by removing or altering comments. In general, the comments
 tell you
what fonts and files are used, and where. Not everybody cares about these things,
but if you do care, then the information is available.

The whole issue of Encapsulated PostScript files is that they are “final form” print
files that may be far from the printer that they will actually be imaged on. If they
have specific needs, particularly in terms of font usage, these needs must be
carefully preserved and passed on downstream, and the program that actually prints
the composite document must take pains to make sure the fonts are available at print
time.

Any piece of software that generates PostScript language code is potentially both a
consumer and a producer of Encapsulated PostScript files. It is probably best not to
think that you are at either end of the chain. In particular, if you import an
Encapsulated PostScript file, integrate it into your document somehow, and then go
to print your document, you are responsible for reading and understanding any of the
font needs of the EPS file you imported. These should then be reflected in your own

©1988 Adobe Systems Incorporated. All rights reserved.�6

font usage comments. If the illustration on page 3 uses the Bodoni font but the rest
of your document is set in Times, suddenly your document now also uses the Bodoni
font (you included the illustration, after all). This should be reflected in the
outermost %%DocumentFonts comments and any other appropriate ones.

4.2� FONT MANAGEMENT COMMENTS

If fonts are used, the following two comments (which are defined in version 2.0 of
the PostScript Document Structuring Conventions) should be included
 in the header
of the EPS file. The %%IncludeFont and %%Begin/%%EndFont comments
should be thought of as inverses of one another. That is, if you encounter an
%%IncludeFont comment and actually include a font file at that point, you
should enclose the font in %%BeginFont and %%EndFont comments.
Conversely, if you see fit to remove a font from a print file (one that presumably
had been delimited with comments), you should always replace it with
 an
%%IncludeFont comment rather than completely stripping it. This guarantees the
reversibility of your actions.

%%DocumentFonts: font1 font2
%%+ font3 font4
The %%DocumentFonts comment provides a full list of all fonts used in the
file. Font names should refer to non-reencoded printer font names and should be
the valid PostScript language names (without the leading slashes). An application
that imports an EPS file should be responsible for satisfying these font needs, or at
least updating its own %%DocumentFonts list to reflect any new fonts.

%%DocumentNeededFonts: font1 font2
The %%DocumentNeededFonts comment lists all fonts that are to be included at
specific points within the EPS file as a result of the %%IncludeFont comment.
These fonts must also be listed in the %%DocumentFonts comment, but an
application may or may not pre-load these at the beginning of the job. The
responsibility should be taken, however, by any program that thinks it is actually
printing the file, to make sure the fonts requested will be available when the file is
printed. This may mean that the individual %%IncludeFont comments may be
satisfied and the fonts placed in-line, or they may simply be ignored, if the fonts are
determined to be already available on the printer. As a third possibility, there may
be enough memory to download all the fonts in front of the job and avoid
processing the individual requests. This %%DocumentNeededFonts comment
provides foreshadowing of the %%IncludeFont comments to follow, to give
printing managers enough information to make these choices intelligently.

%%IncludeFont: fontname
The %%IncludeFont comment signals to an application that the specified font is
to be loaded at that precise location in the file. It is analogous to the familiar
#include syntax in the C language. An application should load the specified font
regardless of whether the same font has been loaded already by other preceding
%%IncludeFont comments, since the font may have been embedded within a
PostScript language save and restore construct. However, if the font is determined
to be available prior to the entire included EPS file (for instance, it may be in ROM
in the printer or might have been downloaded prior to the entire print job) the
%%IncludeFont comment may be ignored by printing manager software.

©1988 Adobe Systems Incorporated. All rights reserved.� 7

When an application satisfies an %%IncludeFont request, it should always bracket
the font itself with the %%BeginFont and %%EndFont comments.

A font that is wholly contained, defined, and used within the EPS file (a
downloaded font) should be noted in the %%DocumentFonts comment, but not
the %%DocumentNeededFonts comment. The font should follow conventions
listed in the Document Structuring Conventions in order to retain full compatibility
with print spoolers.

%%BeginFont: fontname
%%EndFont
The %%BeginFont and %%EndFont comments bracket an included downloadable
font. The fontname is the simple PostScript language name for the font. These
fonts may be stripped from the included file if they are determined to be available
(but should be replaced by an %%IncludeFont comment).

4.3 FILE MANAGEMENT COMMENTS

%%IncludeFile: filename
This comment, which can occur only in the body of an EPS file, allows a separate
file to be inserted at any point within the EPS file. The file might not be searched
for or inserted until printing actually occurs, so user care is required to ensure its
availability. If it is used, the %%DocumentFiles comment should be used as well.
See the Structuring Conventions for more information.

%%BeginFile: filename
%%EndFile
The %%BeginFile and %%EndFile comments bracket an included file. They are
the “inverse” of the %%IncludeFile comment. The filename is evaluated in the
context of the local file system. These files may not be stripped from the included
file at print time, because they undoubtedly contain executable code. However, they
may be temporarily removed, or “factored out” to save space during storage. They
should always be replaced by the %%IncludeFile comment.

4.4� COLOR COMMENTS

%%DocumentProcessColors: keyword keyword ...
This comment marks the use of process colors within the document. Process colors
are defined to be cyan, magenta, yellow, and black. These four colors are indicated in
this comment by the keywords Cyan, Magenta, Yellow, and Black. This comment
is used primarily when producing color separations. The (atend) conventions is
allowed.

%%DocumentCustomColors: name name ...
This indicates the use of custom colors within a document. These colors are
arbitrarily named by an application, and their CMYK or RGB approximations are
provided through the %%CMYKCustomColor or %%RGBCustomColor
comments within the body of the document. The names are specified to be any

©1988 Adobe Systems Incorporated. All rights reserved.�8

arbitrary PostScript language string except (Process Cyan), (Process Magenta),
(Process Yellow), and (Process Black), which need to be reserved for custom color
implementation by applications. The (atend) specification is permitted.

%%BeginProcessColor: keyword
 %%EndProcessColor
The keyword here is either Cyan, Magenta, Yellow, or Black. During color
separation, the code between these comments should only be downloaded during the
appropriate pass for that process color. Intelligent printing managers can save
considerable time by omitting code within these bracketing comments on the other
three separations. Extreme care must be taken by the document composition
software to correctly control overprinting and “knockouts” if these comments are
employed, since the code may or may not actually be executed.

%%BeginCustomColor: keyword
 %%EndCustomColor
The keyword here is any PostScript language string except (Process Cyan), (Process
Magenta), (Process Yellow), and (Process Black). During color
 separation, the code
between these comments should only be downloaded during the appropriate pass for
that custom color. Intelligent printing managers can save considerable time by
omitting code within these bracketing comments on the other three separations.
Extreme care must be taken by the document composition software to correctly
control overprinting and knockouts if these comments are employed, since the code
may or may not be executed.

%%CMYKCustomColor: cyan magenta yellow black keyword
This provides an approximation to the custom color specified by keyword. The four
components of cyan, magenta, yellow, and black must be specified as numbers from
0 to 1 representing the percentage of that process color. These numbers are exactly
analogous to the arguments to the setcmykcolor PostScript language operator. The
keyword follows the same custom color naming conventions for the
%%DocumentCustomColors comment.

%%RGBCustomColor: red green blue keyword
This provides an approximation to the custom color specified by keyword. The three
components of red, green, and blue must be specified as numbers from 0 to 1
representing the percentage of that process color. These numbers are exactly
analogous to the arguments to the setrgbcolor PostScript language operator. The
keyword follows the same custom color naming conventions for the
%%DocumentCustomColors comment.

5.� “WELL-BEHAVED” RULES

An application should encapsulate the imported EPS code in a save / restore
construct, which will allow all printer VM (memory) to be recovered and all
graphics state restored. Since the code in the imported EPS file will be embedded
within the PostScript language that an application will generate for the current
page, it is necessary that it obey the following rules, in order to keep from
disrupting the enclosing document:

©1988 Adobe Systems Incorporated. All rights reserved.� 9

5.1� OPERATORS TO AVOID

The following PostScript operators should not be included in a PostScript language
file for import; the result of executing any of these is not guaranteed (see the
PostScript Document Structuring Conventions for more on this):

grestoreall� initgraphics initmatrix� initclip
erasepage� copypage banddevice� framedevice
nulldevice� renderbands setpageparams� note
exitserver� setscreen* settransfer*

5.2� THE ‘SETSCREEN’ AND ‘SETTRANSFER’ OPERATORS

The setscreen operator is troublesome when one file is included within another.
setscreen is a system-level command that is appropriate for changing the halftone
machinery to compensate for marking engine tendencies, but when used for “special
effects” can cause problems. For EPS files, the setscreen and settransfer operators
are permitted only under restricted terms.

THE ‘SETTRANSFER’ AND ‘SETCOLORTRANSFER’
OPERATORS
The settransfer operator changes the gray-level and color response curves over the
interval from 0 to 1. There are two basic uses of it: to invert an image (typically
flipping blacks and whites, less often colors), or to adjust the
 response curve for a
particular output device.

The best (and required) approach for using settransfer is to combine your function
with the existing one. Here is the recommended way to do this:

{ dummy exec 1 exch sub } dup 0 currentransfer put settransfer

In this example, the desired transfer function is the code 1 exch sub. The dummy
exec essentially executes the existing transfer function before executing the new
code. The name dummy is replaced by the actual procedure body from the existing
transfer function through the put instruction. The result is conceptually equivalent
to this:

{ { original proc } exec 1 exch sub } settransfer

This approach is better than “concatenating” procedures because it does not require
the existing transfer function to be duplicated (consuming memory).

5.3 THE ‘SHOWPAGE’ OPERATOR

The showpage operator is permitted in EPS files primarily because it is present in so
many PostScript language files. It is reasonable for an EPS file to use the showpage
operator if needed (although it is not necessary if the file is truly imported into
another document). It is the including application’s
 responsibility to disable
showpage if needed. The recommended method to accomplish this is as follows:

©1988 Adobe Systems Incorporated. All rights reserved.�10

TEMPORARILY DISABLING ‘SHOWPAGE’

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash
newpath
/showpage { } def

} bind def
/ENDEPSFILE { %def

EPSFsave restore
} bind def

BEGINEPSFILE
 100 300 translate
 .5 .5 scale
 % include the EPS file here, which may execute showpage with no effect

ENDEPSFILE % restore state and continue

This method will only disable the showpage operator during the execution of the
EPS file, and will restore the previous semantics of showpage afterward. It is the
responsibility of the EPS file itself to avoid the operators listed in the previous
section that might cause unexpected behavior when imported. They need not be
redefined along with showpage, although it is permissible to do so.

5.4 STACKS AND DICTIONARIES
All of the PostScript interpreter’s stacks (including the dictionary stack) should be
left in the state that they were in before the imported PostScript language code was
executed. This is normally the case for well-written PostScript language programs,
and this is still the best way to keep unanticipated side-effects to a minimum. Please
avoid unnecessary clear and "countdictstack 2 sub { end } repeat" cleanup
techniques. If you have accidentally left something on one of the stacks, it is best to
understand your program well enough to get rid of it, rather than issuing a
wholesale cleanup instruction at the end, which will not only clear your operands
from the stack, but perhaps will clear other objects as well.

It is recommended that the imported EPS file create its own dictionary instead of
writing into whatever the current dictionary might be. Make sure that this
dictionary is removed from the dictionary stack when through (using the PostScript
language end operator) to avoid the possibility of an invalidrestore error. Also, no
global string bodies should be changed (with either put or putinterval).

If a special dictionary (like statusdict) is required in order for the imported
PostScript language code to execute properly, then it should be included as part of
the EPS file. However, it should be enclosed in very specific %%BeginFeature and
%%EndFeature comments as specified in the Document Structuring Conventions.
No dictionary should be assumed to be present in the printer, and fonts should be
reencoded as needed by the EPS file itself.

©1988 Adobe Systems Incorporated. All rights reserved.� 11

5.5� THE GRAPHICS STATE

When a PostScript language program is imported into the middle of another
executing program, the state of the interpreter may not be exactly in its default
state. The EPS file should assume that the graphics state is in its default state, even
though it may not be. An importing application may choose to scale the coordinate
system or to change the transfer function to change the behavior of the EPS file
somewhat. If the EPS file makes assumptions about the graphics state (like the
clipping path) or explicitly sets something it shouldn’t (the transformation
matrix), the results may not be what were expected.

The importing application is responsible for returning the color to be black, the
current dash pattern, line endings, and other miscellaneous aspects of the graphics
state to their default condition (as specified in the PostScript Language Reference
Manual). This can be done in either of two ways: the initial
 graphics state can be
restored from variables, or the state can be explicitly set:

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash
newpath
/showpage { } def

} bind def

/ENDEPSFILE { %def
EPSFsave restore

} bind def

6.� FILE TYPES AND FILE NAMING

APPLE MACINTOSH FILES
The Macintosh file type for application-created PostScript language files is EPSF.
Files of type TEXT will also be allowed, so that users can create EPS files with
standard editors, although the Structuring Conventions must still be strictly
followed. A file of type EPSF should contain a PICT resource in the resource fork
of the file containing a screen representation of the PostScript language code. The
file name itself may follow any naming convention as long as the file type is EPSF.
If the file type is TEXT , the extensions .epsf and .epsi, respectively, should be used
for the Macintosh-specific format and EPSI interchange format.

MS-DOS AND PC-DOS FILES
The recommended file extension is .EPS. For EPSI files, the extension should be
.EPI. Other file extensions also can be used, but it will be assumed that these files
are text-only files with no screen metafile included in them.

OTHER FILE SYSTEMS
In general, the extension .epsf is the preferred way to name an EPS file, and .epsi
for the interchange format. In systems where lower-case letters are not recognized
or are not significant, all upper-case can be used.

©1988 Adobe Systems Incorporated. All rights reserved.�12

7.� SCREEN REPRESENTATIONS

The EPS file will usually have a graphic screen representation so that it can be
manipulated and displayed on a workstation’s screen prior to printing. The user may
position, scale, crop or rotate this screen representation, and the composing software
should keep track of these manipulations and reflect them in the PostScript language
code that is ultimately sent to the printing device.

The exact format of this screen representation is machine-specific. That is, each
computing environment may have its own preferred bitmap format, and that is
typically the appropriate screen representation for that environment. An interchange
representation is specified that should be implemented by everyone, and any
environment-specific formats can be supported in addition, as deemed appropriate.

7.1� APPLE MACINTOSH: PICT RESOURCE

A QuickDraw™ representation of the PostScript language file can be created and
stored as a PICT in the resource fork of the file. It should be given resource number
256. If the PICT exists, the importing application may use it for screen display. If
the picframe is transformed to PostScript language coordinates, it should agree with
the %%BoundingBox comment.

Given the size limitations on PICT images, this may not always agree for large
illustrations. If there is a discrepancy, the %%BoundingBox always should be
taken as the "truth", since it accurately describes the area that will be imaged by the
PostScript language code itself. In this situation, applications producing the preview
PICT must all take the same action so that the importing application knows what to
do.

Since it is more important to have a reasonable facsimile of the image than it is to
have any particular part of it be high quality, the PICT image should be scaled to
fit within the constraints of the PICT format. That is, the picture will all be there
(it will not be cropped), but it will actually be smaller than the real image. The
importing application should then scale the PICT to a size which matches the
bounding box as expressed in the %%BoundingBox comment.

7.2 PC/DOS: WINDOWS METAFILE OR TIFF FILE

Either a Microsoft® Windows Metafile or a TIFF (Tag Image File Format) section
can be included as the screen representation of an EPS file.

The EPS file itself has a binary header added to the beginning that provides a sort of
“table of contents” to the file. This is necessary since there is not a second “fork”
within the file system as there is in the Macintosh file system.

NOTE:
It is always permissible to have a pure ASCII PostScript language file as an
EPS file in the DOS environment, as long as it does not contain the preview
section. The importing application should check the first three bytes of the
file. If they match the header as shown below, the binary header should be
expected. If the first two match %!, it should be taken to be an ASCII
PostScript language file.

©1988 Adobe Systems Incorporated. All rights reserved.� 13

DOS EPS Binary File Header

Bytes� Description
0-3� Must be hex C5D0D3C6 (byte 0=C5)
4-7� Byte position in file for start of

PostScript language code section.
8-11� Byte length of PostScript language section
12-15� Byte position in file for start of Metafile

screen representation.
16-19� Byte length of Metafile section (PSize)
20-23� Byte position of TIFF representation
24-27� Byte length of TIFF section
28-29� Checksum of header (XOR of bytes 0-27)

NOTE: if Checksum is FFFF then it is to be ignored.

Note:
It is assumed that either the Metafile or the TIFF position and length fields
are zero; that is, only one or the other of these two formats is included in
the EPS file.

The Metafile should follow the guidelines set forth by the Windows specification.
In particular, it should not set the viewport or mapping mode, and it should set the
window origin and extent. The application should scale the picture to fit within the
%%BoundingBox comment specified in the PostScript language file.

8.� DEVICE-INDEPENDENT INTERCHANGE FORMAT

This last screen representation is intended as an interchange format between widely
varied systems. In particular, the bitmap preview section of the file is very simple
and is represented as ASCII hexadecimal in order to be more easily transportable.
This format is dubbed Encapsulated PostScript Interchange format, or “EPSI.”

This format wins no prizes for compactness, but it should be truly portable and
requires no special code for decompressing or otherwise understanding the bitmap
portion, other than the ability to understand hexadecimal notation.

It is expected that applications that support EPSF will gradually head toward
supporting only two formats: the first is the “native” format for the environment
in which the application runs (where the preview section is Macintosh PICT or
TIFF or Sun raster files or whatever); the second format should
 simply be this
interchange format. Then files can be interchanged between widely varying systems
without each having to know the preferred bitmap representation of the others.

%%BeginPreview: width height depth lines
%%EndPreview
These comments bracket the preview section of an EPS file in Interchange format
(EPSI). The width and height fields provide the number of image samples (pixels)
for the preview. The depth field provides how many bits of data are used to
establish one sample pixel of the preview (1, 2, 4, or 8). An image which is 100
pixels wide will always have 100 in the width field, although the number of bytes

©1988 Adobe Systems Incorporated. All rights reserved.�14

of hexadecimal needed to build that line will vary if depth varies. The lines field
tells how many lines of hexadecimal are contained in the preview, so that they may
be easily skipped by an application that doesn’t care. All the arguments are integers.

8.1� SOME RULES AND GUIDELINES FOR “EPSI” FILES
The following guidelines attempt to clarify a few basic assumptions about the EPSI
format. It is intended to be extremely simple, since its purpose is interchange. No
system should have to do much work to decipher one of these files, and the preview
section is mostly just a convenience to begin with. This format is accordingly
deliberately kept simple and option-free.

• The preview section must be after the header comment section but before the
document prologue definitions. That is, it should immediately follow the
%%EndComments line in the EPS file.

• In the preview section, bits of 0 are white, bits of 1 are black. Grayscale is not
supported.

• The Preview image can be of any resolution. The size of the image is determined
solely by its bounding box, and the preview data should be scaled to fit that
rectangle. Thus, the width and height parameters from the image are not its
measured dimensions, but simply describe the amount of data supplied for the
preview. The dimensions are described only by the bounding rectangle.

• The hexadecimal lines must never exceed 255 bytes in length. In cases where the
preview is very wide, the lines must be broken. The line breaks can be made at any
even number of hex digits, since the dimensions of the finished preview are
established by the width , height, and depth values.

• All non-hexadecimal characters should be ignored when collecting the data for
the preview, including tabs, spaces, newlines, percent characters, and other stray
ASCII characters. This is analogous to the PostScript language readhexstring
operator.

• Each line of hexadecimal will begin with a percent sign (‘% ’). This makes the
entire preview section into a PostScript language comment, so that the file can be
printed without modification.

• If the %%IncludeFile or %%BeginFile / %%EndFile comments are ever used
to extract the preview section from the EPS file, then the lines argument to the
%%BeginPreview comment must be adjusted accordingly. The lines value
specifies only the number of lines to skip if you’re not the least bit interested.

• If the width of the image is not a multiple of 8 bits, the hexadecimal digits are
padded out to the next highest multiple of 8 bits.

©1988 Adobe Systems Incorporated. All rights reserved.� 15

EXAMPLE “EPSI” FILE

Here is a sample file showing the EPS Interchange (EPSI) format. The preview
section is expressed in user space and the correct comments are included. Remember
that there are 8 bits to a byte, and that it requires 2 hexadecimal digits to represent
one binary byte. Therefore the 80-pixel width of the image requires 20 bytes of
hexadecimal data, which is (80 / 8) * 2. The PostScript language segment itself
simply draws a box, as can be seen in the last few lines.

%! PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 80 24
%%Pages: 0
%%Creator: Glenn Reid
%%CreationDate: September 19, 1988
%%EndComments
%%BeginPreview: 80 24 1 24
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
%%EndPreview
%%EndProlog
%%Page: "one" 1
 4 4 moveto 72 0 rlineto 0 16 rlineto -72 0 rlineto closepath
 8 setlinewidth stroke
%%Trailer

©1988 Adobe Systems Incorporated. All rights reserved.�16

