精华区 [关闭][返回]

当前位置:网易精华区>>讨论区精华>>电脑技术>>CAD/CAM>>CAD/CAM软件测评>>  对CAD技术的看法(二)

主题:  对CAD技术的看法(二)
发信人: dm73125()
整理人: gz.ly(2002-12-07 13:06:42), 站内信件
3.3 能直接进入三维设计吗 有一个类似的讨论,我们现在的电子类专业大学教学,是半导体原理讲起,之后是二极管、三极管、单管放大、复合放大、小规模集成电路… 这样的顺序讲硬件。然后从二进制、各种进制的转换、机器指令、到一般程序设计… 这样的顺序讲软件。这里强调的是个“体系”。于是,学生在校期间很难接触到最新的软件技术,要想接触最新技术,目前可能要在学校学十年,将来技术进一步发展,十五年也不一定毕业。因为“体系”太庞大了,要不怎么叫知识爆炸呢。 实际上,计算机应用技术完全没有必要从二进制学起。一个完全不知道怎样将十进制数转换成二进制的人,照样能用好计算机。因为计算机应用的目的就是“将我们已知如何做的事情自动化”,而十进制转换成二进制,是早就已知如何做了的,早就自动化了的,用户已经不必知道和介入这个过程了。如果计算机不能越来越多地接过人类已经确认的工作过程,实现自动化,就不会有越来越多的计算机系统投入使用。 因此,计算机软件应用特色是:利用软件提供的功能,根据你的题目要求,完成想做的事情。至于软件内部究竟是怎样完成的,没有必要去操心。只要你真的明确自己要做什么(实际上这也不容易)。在软件应用!
上来说,软件能力有多强,你的应用结果就有多好,完全不必象在大学那样,从二进制学起。 可见,跳过二维工程绘图软件应用阶段,直接从三维设计开始,完全没有问题。当然,在三维建模中要用到的二维图线生成技术,还是必须掌握的。 对于一个成熟的设计师来说,进入三维设计最大的障碍不是软件应用技术,而是自己的思考方法。由于多年来习惯于二维工程图表达,习惯于读图中一系列规则的使用,对于描述三维模型上各个特征的类型和相互关系,从思考方法上已经生疏。在这一方面,甚至不如一个新毕业的大学的生接受能力。把自己的思维模式“返朴归真”,是一个必须经历的过程。恢复人类本能的三维模型描述,并不算困难,如果在一个有经验的教师引导下,会很快达到要求。

4.全参数化驱动三维模型的必要与可能 

4.1 只有能用参数驱动的设计模型,才有意义 设计模型的建立,就是设计数据库的数据填充过程。建立数据库的目的,是在将来的设计配凑过程中引用和修改其中的数据,最后完成设计。因此不能进行参数驱动的三维模型,在设计中没有多少用途。仅是做到“看”起来象的建模方法,是没有使用价值的。 这里所说的参数驱动,包括对于新设计的零件、引用的标准件,也包括对各个零件之间的装配关系、位置关系甚至运动关系。

4.2 参数驱动的设计模型的可能性 设计模型可以分为两大类。一种我称之为“雕塑模型”,例如人脸。另一种我称之为“几何模型”,这就是各种机械零件的实际特点。无论多么复杂的几何模型,都可以分解成有限品种的构成特征,而每一种构成特征,都可以用有限的参数完全约束,这就是参数化的基本概念。对于机械设计来说,几何模型占我们设计对象的绝大部分。这样,我们的设计,几乎全部都可能用参数化的三维模型表达。Autodesk的MDT和Inventor都是这类软件的典型。 MDT是一种典型的参数化建模软件,其参数化约束的技术特点与工程师的想法仍然有些区别,这种区别恐怕是永远存在的,因为软件的思路永远落后于人类的思路。 

模型的参数约束分为两大类:

1〉几何约束。例如:相互平行、相互同心、两线等长… 这样的约束是确定它们的几何关系,而这种几何关系在未来的设计中是保持不变的。 

2〉尺寸约束。例如:长度、高度、锥角、半径… 这样的约束是确定它们的尺寸大小和相对距离,在将来的设计中,这些尺寸可能改变,也可能被另外的零件引用。 MDT又一种典型的特征建模软件。

其特征模型分为三大类:

1〉基于轮廓的特征: 先有被参数化约束的二维轮廓,之后按要求和软件的可能生成三维模型特征。例如:拉伸、回转、放样… 这样的特征也可以通过布尔运算组合在同一模型中。

2〉基于已有特征的特征: 先有某种特征存在,在此基础上进行修饰。例如:圆角、阵列… 这是一种依附于已有特征的特征。 

3〉定位特征: 作为坐标系的参数化控制结果,生成工作面、工作轴、工作点或者基准坐标系。这些要素也是参数化的。 MDT为设计数据的管理,提供了设计变量的数据结构和管理功能。 同时,在MDT中提供了关于设计参数丰富的数据结构和管理工具,这些是对于传统设计技术的精炼和抽象,是将传统设计技巧用程序模拟并且提供给用户的典型实例。掌握和使用了这类技术,对于设计质量的提高,将起到直接的作用。 

1〉设计变量有控制激活零件用的“内部变量”和对于全部零件或特征都起作用的“全局变量”。事实上,这些设计变量在参数化的装配中同样可以使用。可以引用设计变量填充参数化约束尺寸的值,这样,就可能在数个相关零件的约束尺寸中使用相同的几个设计变量,从而建立起这些零件设计尺寸的自动关联。 

2〉设计变量可以使用外部数据库的数据,例如:Excel表或者*.PRM文件。这样,设计数据将有可能在更大的范围内、用更多的手段进行控制、管理和计算。 可见,从功能上来说,实现全参数化的三维建模,MDT已经具备充要的条件。这些功能实际上是对于传统设计知识的程序化处理,这样的功能是“源于传统设计、高于传统设计”的应用程序包。

5.正确的辅助设计建模概念

5.1 人是CAD系统中的主要成员 我认为,将计算机+应用软件称为“电脑”是一个概念性错误,因为计算机设计系统至今仍然不能(也许很远的将来也不能)象人一样思考,即使这个人是一个不太成熟的设计师。实际上,一个CAD系统的组成应当包括硬件、软件和使用者,无论设计软件的能力有多强,人的操作才是决定这个软件使用之效果的决定性因素。十分清楚,同一个CAD软件,在不同的人手中,会有相当不同的使用效果。例如:AutoCAD在一些人手中仅仅是电子图板,而在另一些人手中却成为很好的二维设计平台。 

这可能取决于下列条件: 

1〉对自己要做的设计的理解到底有多深? 
2〉在建模之前的设计数据准备是否足够充分? 
3〉对自己的专业设计经验和知识面到底有多宽? 
4〉对自己使用的软件功能到底掌握了多少? 

可见,在追求软件应用效果的时候,首先应当检查的是自己的准备是否充足。不能设想,一个设计经验不足的新工程师,会完成一个正确的全参数化驱动三维零件模型。即使是对软件十分了解的应用程序开发商,也可能由于专业设计知识的贫乏,经常在他的程序中露怯,这样的例子甚至相当常见。 工程师使用CAD系统,尤其是三维设计系统,原有的技术准备肯定不足,必须修正自己的一些概念,这是技术进步的必然。至少你已经被你的制图老师“洗过脑”,三维原始概念十分淡化;再加上没有时间或者没有机会参加正规的软件使用培训,而软件应用靠自己“悟”,是要走许多弯路的;还可能看了一些参考书,而书的作者无意中给你灌输了一些不正确的应用方法,而你却将这些方法当成权威的观点… 总之,完善自己的专业设计知识,参加正规的软件应用培训,是使自己在CAD系统中发挥应有作用的关键因素。 

有这样一种观点:按照软件的设计思想使用软件进行自己的设计。这种观点认为CAD应用过程的主要因素是软件而不是使用者。因此使用者需要克服自我,去适应软件。我认为这是不对的,在专业设计问题上,最高权威不是软件,而是设计者。因此在CAD技术的应用过程中,必须“以我为主”。就是按照应用者的设计思路去使用软件的功能。

这可能有几种结果:

1〉用户要求能够由软件功能直接完成。这当然就顺利了,说明你选用这个软件的想法相当准确。
2〉软件没有提供用户要求的直接功能。解决的方法不是顺应软件的功能而放弃这种功能要求,应当是采用迂回战术,例如在MDT中生成参数化的加强筋。这说明软件的选择也是比较合适的。
3〉软件没有提供用户要求的功能。迂回战术和专业程序补充也不能实现,说明这个软件不适合你的设计要求。
4〉说不清楚的用户的要求,或者不合理的用户要求。例如:想要绘制几个二维视图,要求软件生成对应的三维模型。再如:要求进行600个零件的全参数化装配… 之所以说是这类要求不合适,是因为在实际的工程设计过程中,或者从人类现有的技术和思维结果上讨论,实现这样的要求是不可能的、或者是没有必要的。这样的情况下,只能提高用户自己的设计能力和理论水平了。 

总之,在任何CAD软件的使用上,必须以我(成熟的专业设计师)为主,以我的设计思路和原始数据为主,软件永远是辅助者。学习软件功能和操作方法的过程,就像学外语的过程,结果不是改变自己要表达的内容,而是改变表达的方法。按照软件的设计思路进行设计的观点,会使设计的精华、也就是工程师的创造性,受到很大的限制。当然,如果仅是抄图,建立一个看起来象就行的三维模型,也就无所谓了。 另一方面,CAD技术中有不少“因为发明而产生的需求”。就是说,可能因为CAD软件的介入,造成传统的设计过程产生新的模式。例如:在英特网上进行设计组的相互配合和设计结果的引用,设计素材库的建立与使用,设计数据结构的重新整理和定义等等。要对软件深入的理解,才能掌握和使用这些技术方法。但这些变化不是凭空产生的,是“源于传统设计、高于传统设计”,仍然是以传统设计技术为基础的,仍然需要使用者在设计能力上具有足够的水平。 与之相关的是在选用软件之前做考题的问题。许多人喜欢把自己的专业设计问题提出来让软件商去做,以此充当软件选型的主要根据。我认为这也不是很合适的。如果用户不直接参与这个过程,就算是考题做出来了,不见得用户自己也能做出来。因此!
,在软件购入之后的使用中,仍然会存在一大堆问题。因为这样的用户没有把自己当作CAD系统的主角,在考题制作过程中,经销商的工程师成了主角。这与将来的使用状况并不相同,当然结果也就不具有决定性的意义。

5.2 参数化建模的主体思路 仅靠一张零件图,不需要其他任何专业知识的支持,也能生成模型。这是“造型派”的典型观点。实际上,建立一个正确的参数化模型,必须有许多相关知识协助才能完成。可以这样描述:你怎么设计,我怎么测量;你怎么测量,我怎么加工;你怎么加工,我怎么建模。这是一种比较形象而粗略的表述,需要进一步解释: 

1〉你怎么设计,我怎么测量 设计意图的描述,应当包括几何数据和其他数据。几何数据是工件的形状和尺寸。其他数据包括:加工方法要求、热处理要求、工件材质等。在加工中,反馈控制几何数据正确性的手段是测量,因此有“你怎么设计,我怎么测量”,就是说,按照设计的原始要求,测量实际工件,才能最准确地控制加工结果。
2〉你怎么测量,我怎么加工 工艺设计的原始构想常常来自测量的要求。例如:尽可能用测量的基准充当定位基准。符合测量要求的加工方法,一定能保证加工质量。例如,针对内径表测量孔径,双刃铰削是合适的加工方法。因此有“你怎么测量,我怎么加工”。常常有这样的事情,工艺设计人员总是与测量系统设计人员讨论,完善自己的工艺设计。
3〉你怎么加工,我怎么建模 对于参数化三维模型建立来说,怎样做才正确呢?基本的概念是:三维建模就是在计算机中模拟制造我们将要设计的机器。三维建模的全过程,应当是这个零件未来制造和使用过程的概要表达。因此有“你怎么加工,我怎么建模”。可见,对工艺不熟悉,就不可能正确建立参数化三维模型。 

5.3 尺寸标注与模型参数化 
在二维工程图绘制过程中,最困难的事情就是处理尺寸标注。因此我认为,看一个工程师的设计绘图能力,首先看他的尺寸标注能力。 正确的尺寸标注,包含着丰富的设计意图和工艺意图的表达。在二维工程图生成中的尺寸标注原则和技术要点,应当完全移植到三维参数化建模中使用。虽然可能有许多种约束的组合,都能够完模型的全约束,但其中只有一种是正确的,因为这种方案真正表达了设计师的意图,真正做到了“你怎么设计…我怎么造型”。 当然,不正确的标注方法即使在二维设计中也应当抛弃。但并不是所有的人都认识到了这一点。例如有人编写了一种尺寸标注程序(参见右图):用户选定多根线条,这个功能就能够一次标出所有的水平尺寸。这功能究竟会有多大的用途?因为一组水平设计尺寸可不是随便标出来的。插图中的两种尺寸标法是当然不是同一个设计意图的表达。象左边的标注结果,在机械设计中碰到得相当少。 在二维CAD软件功能中,有一些操作极难自动化,标注功能就是典型。无论是尺寸标注还是形位公差的标注。这些标注的图样并不复杂,但是其中的技术含量太多,可变的因素太多。因此任何将这样的功能自动化的企图都是很难实现的。这就是为什么是CAD(计算机辅助设计)!
而不是CD(计算机设计)。可见这个程序的设计者,对尺寸标注的作用理解得并不深,这类程序不是写给机械工程师用的。

5.4 零件造型怎样才是正确的结果 

创建三维参数化零件模型,不仅仅是为了造型,正确的模型应当为以后的许多使用,如设计的修改和调整、参加装配、力学分析、运动分析、数控加工等,准备好充分的数据和参数驱动的可能。可以说,造型的近期目标是为了修改。这就要求所创建出的零件造型结构完整,尺寸和几何约束齐全、正确,以便在零件设计过程中,可以对不合理的结构随时作相应的调整。

应当达到如下的要求: 1〉特征的完整性性。 在创建三维参数化零件模型中,简化掉某些特征可以提高效率,减少图形文件的体积。 但是某特征是否可以被简化,与将来模型的应用需求是直接关联的。 例如:如果是为得到完整的二维工程图,所有特征都必须完整做出。如果是为有限元分析,原则上讲所有特征必须完整做出,但是对于相当小尺寸的结构特征可以省略。如果是为运动和动力学分析,某些细节特征(例如较小的圆角、倒角)可以省略。如果是为数控加工后处理,将来由铣刀头部圆弧切削生成的内圆角可以省略等等。 
2〉草图轮廓约束的完整性 想在二维工程图中出现的尺寸,应当添加到轮廓上。未来优化设计中可能需要调整的尺寸,必须加到轮廓上。 能够确定的几何关系,例如轮廓片断之间的相切、平行、等长、等半径等等约束,应当充分而完整地添加上去。可以将肯定不需改变的尺寸约束省略,而几何约束必须保证齐全正确。在MDT中,坚持使用多段线(PolyLine)生成轮廓草图线,能够最可靠地直接继承轮廓的几何约束关系。

总之,并不是MDT报告说“草图已被完全约束。”就说明轮廓的约束就是完整正确的了,判断的标准是在未来设计中的可用性。在约束尺寸值的确定上,应使用运算表达式表达与其他尺寸的设计关联,将设计师头脑中的设计意图准确表达出来。 如果目前不需要,而且轮廓是精确做图生成的,可以省略一些尺寸约束。添加一个约束尺寸是可以随时随地进行的。对于几何关系的约束,应当完整添加,以便发现原来构思中的漏洞。而且几何约束的添加,可能直接影响到整个模型的样子。

6.结论 

由于大家不同专业的设计习惯、规则、经验都相当不一致,这造成了机械设计CAD推广中的困难之一。因此本文引用了一个比较简单的,机械专业通用的例子进行分析。从中是否可以得出下面几个要点:

▲ 产品设计的最终出路在于三维设计,这是无法回避的。早日进入三维设计,就会早一天取得经济效益和技术效益 
▲ 以三维设计软件为平台,应至少集成进来有限元分析软件组成应用系统,才能真正解决提高设计质量的问题。
▲ 三维设计平台软件必须有投影生成二维工程图的功能,并有双相关连的能力。
▲ 使用三维CAD软件,对工程师关于自己的设计的理解,将提出了比现在更高的要求,以便掌握三维建模的主要思路和技巧。
▲ CAD系统可能自动完成的是我们已经熟悉的、定型的设计过程。通过CAD系统软件,能给工程师提供许多包含确定设计经验的应用程序,达到设计知识传递和保存的作用。软件商在这方面正在进行富有成效的工作。 
▲ CAD系统之所以能够帮助工程师提高设计质量,是因为软件中包含有许多成熟的设计功能,可能直接参与设计过程,对于防止设计错误具有明确的作用。从这个意义上讨论,对工程师的常规设计能力要求可以有所放松。当然,相关软件的编写是否能够符合专业设计的要求,也是必须注意的事情。 
▲ 三维CAD系统是技术创新和产品设计的有效辅助工具,对于大幅度替代试制、台架试验,对于各个设计部分的协调、配合,对于设计数据的管理和使用等,比起传统设计二维设计软件,具有更大的实际意义。 



[关闭][返回]