RFC 2068 HTTP/1.1 January 1997
The syntax and registry of HTTP language tags is the same as that defined by RFC 1766 [1]. In summary, a language tag is composed of 1 or more parts: A primary language tag and a possibly empty series of subtags:
language-tag = primary-tag *( "-" subtag )
primary-tag = 1*8ALPHA subtag = 1*8ALPHA
Whitespace is not allowed within the tag and all tags are case- insensitive. The name space of language tags is administered by the IANA. Example tags include:
en, en-US, en-cockney, i-cherokee, x-pig-latin
where any two-letter primary-tag is an ISO 639 language abbreviation and any two-letter initial subtag is an ISO 3166 country code. (The last three tags above are not registered tags; all but the last are examples of tags which could be registered in future.)
3.11 Entity Tags
Entity tags are used for comparing two or more entities from the same requested resource. HTTP/1.1 uses entity tags in the ETag (section 14.20), If-Match (section 14.25), If-None-Match (section 14.26), and If-Range (section 14.27) header fields. The definition of how they are used and compared as cache validators is in section 13.3.3. An entity tag consists of an opaque quoted string, possibly prefixed by a weakness indicator.
entity-tag = [ weak ] opaque-tag
weak = "W/" opaque-tag = quoted-string
A "strong entity tag" may be shared by two entities of a resource only if they are equivalent by octet equality.
A "weak entity tag," indicated by the "W/" prefix, may be shared by two entities of a resource only if the entities are equivalent and could be substituted for each other with no significant change in semantics. A weak entity tag can only be used for weak comparison.
An entity tag MUST be unique across all versions of all entities associated with a particular resource. A given entity tag value may be used for entities obtained by requests on different URIs without implying anything about the equivalence of those entities.
Fielding, et. al. Standards Track [Page 29]
RFC 2068 HTTP/1.1 January 1997
3.12 Range Units
HTTP/1.1 allows a client to request that only part (a range of) the response entity be included within the response. HTTP/1.1 uses range units in the Range (section 14.36) and Content-Range (section 14.17) header fields. An entity may be broken down into subranges according to various structural units.
range-unit = bytes-unit | other-range-unit
bytes-unit = "bytes" other-range-unit = token
The only range unit defined by HTTP/1.1 is "bytes". HTTP/1.1 implementations may ignore ranges specified using other units. HTTP/1.1 has been designed to allow implementations of applications that do not depend on knowledge of ranges.
4 HTTP Message
4.1 Message Types
HTTP messages consist of requests from client to server and responses from server to client.
HTTP-message = Request | Response ; HTTP/1.1 messages
Request (section 5) and Response (section 6) messages use the generic message format of RFC 822 [9] for transferring entities (the payload of the message). Both types of message consist of a start-line, one or more header fields (also known as "headers"), an empty line (i.e., a line with nothing preceding the CRLF) indicating the end of the header fields, and an optional message-body.
generic-message = start-line *message-header CRLF [ message-body ]
start-line = Request-Line | Status-Line
In the interest of robustness, servers SHOULD ignore any empty line(s) received where a Request-Line is expected. In other words, if the server is reading the protocol stream at the beginning of a message and receives a CRLF first, it should ignore the CRLF.
Fielding, et. al. Standards Track [Page 30]
RFC 2068 HTTP/1.1 January 1997
Note: certain buggy HTTP/1.0 client implementations generate an extra CRLF's after a POST request. To restate what is explicitly forbidden by the BNF, an HTTP/1.1 client must not preface or follow a request with an extra CRLF.
4.2 Message Headers
HTTP header fields, which include general-header (section 4.5), request-header (section 5.3), response-header (section 6.2), and entity-header (section 7.1) fields, follow the same generic format as that given in Section 3.1 of RFC 822 [9]. Each header field consists of a name followed by a colon (":") and the field value. Field names are case-insensitive. The field value may be preceded by any amount of LWS, though a single SP is preferred. Header fields can be extended over multiple lines by preceding each extra line with at least one SP or HT. Applications SHOULD follow "common form" when generating HTTP constructs, since there might exist some implementations that fail to accept anything beyond the common forms.
message-header = field-name ":" [ field-value ] CRLF
field-name = token field-value = *( field-content | LWS )
field-content = <the OCTETs making up the field-value and consisting of either *TEXT or combinations of token, tspecials, and quoted-string>
The order in which header fields with differing field names are received is not significant. However, it is "good practice" to send general-header fields first, followed by request-header or response- header fields, and ending with the entity-header fields.
Multiple message-header fields with the same field-name may be present in a message if and only if the entire field-value for that header field is defined as a comma-separated list [i.e., #(values)]. It MUST be possible to combine the multiple header fields into one "field-name: field-value" pair, without changing the semantics of the message, by appending each subsequent field-value to the first, each separated by a comma. The order in which header fields with the same field-name are received is therefore significant to the interpretation of the combined field value, and thus a proxy MUST NOT change the order of these field values when a message is forwarded.
Fielding, et. al. Standards Track [Page 31]
RFC 2068 HTTP/1.1 January 1997
4.3 Message Body
The message-body (if any) of an HTTP message is used to carry the entity-body associated with the request or response. The message-body differs from the entity-body only when a transfer coding has been applied, as indicated by the Transfer-Encoding header field (section 14.40).
message-body = entity-body | <entity-body encoded as per Transfer-Encoding>
Transfer-Encoding MUST be used to indicate any transfer codings applied by an application to ensure safe and proper transfer of the message. Transfer-Encoding is a property of the message, not of the entity, and thus can be added or removed by any application along the request/response chain.
The rules for when a message-body is allowed in a message differ for requests and responses.
The presence of a message-body in a request is signaled by the inclusion of a Content-Length or Transfer-Encoding header field in the request's message-headers. A message-body MAY be included in a request only when the request method (section 5.1.1) allows an entity-body.
For response messages, whether or not a message-body is included with a message is dependent on both the request method and the response status code (section 6.1.1). All responses to the HEAD request method MUST NOT include a message-body, even though the presence of entity- header fields might lead one to believe they do. All 1xx (informational), 204 (no content), and 304 (not modified) responses MUST NOT include a message-body. All other responses do include a message-body, although it may be of zero length.
4.4 Message Length
When a message-body is included with a message, the length of that body is determined by one of the following (in order of precedence):
1. Any response message which MUST NOT include a message-body (such as the 1xx, 204, and 304 responses and any response to a HEAD request) is always terminated by the first empty line after the header fields, regardless of the entity-header fields present in the message.
2. If a Transfer-Encoding header field (section 14.40) is present and indicates that the "chunked" transfer coding has been applied, then
Fielding, et. al. Standards Track [Page 32]
RFC 2068 HTTP/1.1 January 1997
the length is defined by the chunked encoding (section 3.6).
3. If a Content-Length header field (section 14.14) is present, its value in bytes represents the length of the message-body.
4. If the message uses the media type "multipart/byteranges", which is self-delimiting, then that defines the length. This media type MUST NOT be used unless the sender knows that the recipient can parse it; the presence in a request of a Range header with multiple byte-range specifiers implies that the client can parse multipart/byteranges responses.
5. By the server closing the connection. (Closing the connection cannot be used to indicate the end of a request body, since that would leave no possibility for the server to send back a response.)
For compatibility with HTTP/1.0 applications, HTTP/1.1 requests containing a message-body MUST include a valid Content-Length header field unless the server is known to be HTTP/1.1 compliant. If a request contains a message-body and a Content-Length is not given, the server SHOULD respond with 400 (bad request) if it cannot determine the length of the message, or with 411 (length required) if it wishes to insist on receiving a valid Content-Length.
All HTTP/1.1 applications that receive entities MUST accept the "chunked" transfer coding (section 3.6), thus allowing this mechanism to be used for messages when the message length cannot be determined in advance.
Messages MUST NOT include both a Content-Length header field and the "chunked" transfer coding. If both are received, the Content-Length MUST be ignored.
When a Content-Length is given in a message where a message-body is allowed, its field value MUST exactly match the number of OCTETs in the message-body. HTTP/1.1 user agents MUST notify the user when an invalid length is received and detected.
Fielding, et. al. Standards Track [Page 33]
RFC 2068 HTTP/1.1 January 1997
4.5 General Header Fields
There are a few header fields which have general applicability for both request and response messages, but which do not apply to the entity being transferred. These header fields apply only to the message being transmitted.
general-header = Cache-Control ; Section 14.9 | Connection ; Section 14.10 | Date ; Section 14.19 | Pragma ; Section 14.32 | Transfer-Encoding ; Section 14.40 | Upgrade ; Section 14.41 | Via ; Section 14.44
General-header field names can be extended reliably only in combination with a change in the protocol version. However, new or experimental header fields may be given the semantics of general header fields if all parties in the communication recognize them to be general-header fields. Unrecognized header fields are treated as entity-header fields.
5 Request
A request message from a client to a server includes, within the first line of that message, the method to be applied to the resource, the identifier of the resource, and the protocol version in use.
Request = Request-Line ; Section 5.1 *( general-header ; Section 4.5 | request-header ; Section 5.3 | entity-header ) ; Section 7.1 CRLF [ message-body ] ; Section 7.2
5.1 Request-Line
The Request-Line begins with a method token, followed by the Request-URI and the protocol version, and ending with CRLF. The elements are separated by SP characters. No CR or LF are allowed except in the final CRLF sequence.
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Fielding, et. al. Standards Track [Page 34]
RFC 2068 HTTP/1.1 January 1997
5.1.1 Method
The Method token indicates the method to be performed on the resource identified by the Request-URI. The method is case-sensitive.
Method = "OPTIONS" ; Section 9.2 | "GET" ; Section 9.3 | "HEAD" ; Section 9.4 | "POST" ; Section 9.5 | "PUT" ; Section 9.6 | "DELETE" ; Section 9.7 | "TRACE" ; Section 9.8 | extension-method
extension-method = token
The list of methods allowed by a resource can be specified in an Allow header field (section 14.7). The return code of the response always notifies the client whether a method is currently allowed on a resource, since the set of allowed methods can change dynamically. Servers SHOULD return the status code 405 (Method Not Allowed) if the method is known by the server but not allowed for the requested resource, and 501 (Not Implemented) if the method is unrecognized or not implemented by the server. The list of methods known by a server can be listed in a Public response-header field (section 14.35).
The methods GET and HEAD MUST be supported by all general-purpose servers. All other methods are optional; however, if the above methods are implemented, they MUST be implemented with the same semantics as those specified in section 9.
5.1.2 Request-URI
The Request-URI is a Uniform Resource Identifier (section 3.2) and identifies the resource upon which to apply the request.
Request-URI = "*" | absoluteURI | abs_path
The three options for Request-URI are dependent on the nature of the request. The asterisk "*" means that the request does not apply to a particular resource, but to the server itself, and is only allowed when the method used does not necessarily apply to a resource. One example would be
OPTIONS * HTTP/1.1
The absoluteURI form is required when the request is being made to a proxy. The proxy is requested to forward the request or service it
Fielding, et. al. Standards Track [Page 35]
RFC 2068 HTTP/1.1 January 1997
from a valid cache, and return the response. Note that the proxy MAY forward the request on to another proxy or directly to the server specified by the absoluteURI. In order to avoid request loops, a proxy MUST be able to recognize all of its server names, including any aliases, local variations, and the numeric IP address. An example Request-Line would be:
GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1
To allow for transition to absoluteURIs in all requests in future versions of HTTP, all HTTP/1.1 servers MUST accept the absoluteURI form in requests, even though HTTP/1.1 clients will only generate them in requests to proxies.
The most common form of Request-URI is that used to identify a resource on an origin server or gateway. In this case the absolute path of the URI MUST be transmitted (see section 3.2.1, abs_path) as the Request-URI, and the network location of the URI (net_loc) MUST be transmitted in a Host header field. For example, a client wishing to retrieve the resource above directly from the origin server would create a TCP connection to port 80 of the host "www.w3.org" and send the lines:
GET /pub/WWW/TheProject.html HTTP/1.1 Host: www.w3.org
followed by the remainder of the Request. Note that the absolute path cannot be empty; if none is present in the original URI, it MUST be given as "/" (the server root).
If a proxy receives a request without any path in the Request-URI and the method specified is capable of supporting the asterisk form of request, then the last proxy on the request chain MUST forward the request with "*" as the final Request-URI. For example, the request
OPTIONS http://www.ics.uci.edu:8001 HTTP/1.1
would be forwarded by the proxy as
OPTIONS * HTTP/1.1 Host: www.ics.uci.edu:8001
after connecting to port 8001 of host "www.ics.uci.edu".
The Request-URI is transmitted in the format specified in section 3.2.1. The origin server MUST decode the Request-URI in order to properly interpret the request. Servers SHOULD respond to invalid Request-URIs with an appropriate status code.
Fielding, et. al. Standards Track [Page 36]
RFC 2068 HTTP/1.1 January 1997
In requests that they forward, proxies MUST NOT rewrite the "abs_path" part of a Request-URI in any way except as noted above to replace a null abs_path with "*", no matter what the proxy does in its internal implementation.
Note: The "no rewrite" rule prevents the proxy from changing the meaning of the request when the origin server is improperly using a non-reserved URL character for a reserved purpose. Implementers should be aware that some pre-HTTP/1.1 proxies have been known to rewrite the Request-URI.
5.2 The Resource Identified by a Request
HTTP/1.1 origin servers SHOULD be aware that the exact resource identified by an Internet request is determined by examining both the Request-URI and the Host header field.
An origin server that does not allow resources to differ by the requested host MAY ignore the Host header field value. (But see section 19.5.1 for other requirements on Host support in HTTP/1.1.)
An origin server that does differentiate resources based on the host requested (sometimes referred to as virtual hosts or vanity hostnames) MUST use the following rules for determining the requested resource on an HTTP/1.1 request:
1. If Request-URI is an absoluteURI, the host is part of the Request-URI. Any Host header field value in the request MUST be ignored.
2. If the Request-URI is not an absoluteURI, and the request includes a Host header field, the host is determined by the Host header field value.
3. If the host as determined by rule 1 or 2 is not a valid host on the server, the response MUST be a 400 (Bad Request) error message.
Recipients of an HTTP/1.0 request that lacks a Host header field MAY attempt to use heuristics (e.g., examination of the URI path for something unique to a particular host) in order to determine what exact resource is being requested.
5.3 Request Header Fields
The request-header fields allow the client to pass additional information about the request, and about the client itself, to the server. These fields act as request modifiers, with semantics
Fielding, et. al. Standards Track [Page 37]
RFC 2068 HTTP/1.1 January 1997
equivalent to the parameters on a programming language method invocation.
request-header = Accept ; Section 14.1 | Accept-Charset ; Section 14.2 | Accept-Encoding ; Section 14.3 | Accept-Language ; Section 14.4 | Authorization ; Section 14.8 | From ; Section 14.22 | Host ; Section 14.23 | If-Modified-Since ; Section 14.24 | If-Match ; Section 14.25 | If-None-Match ; Section 14.26 | If-Range ; Section 14.27 | If-Unmodified-Since ; Section 14.28 | Max-Forwards ; Section 14.31 | Proxy-Authorization ; Section 14.34 | Range ; Section 14.36 | Referer ; Section 14.37 | User-Agent ; Section 14.42
Request-header field names can be extended reliably only in combination with a change in the protocol version. However, new or experimental header fields MAY be given the semantics of request- header fields if all parties in the communication recognize them to be request-header fields. Unrecognized header fields are treated as entity-header fields.
6 Response
After receiving and interpreting a request message, a server responds with an HTTP response message.
Response = Status-Line ; Section 6.1 *( general-header ; Section 4.5 | response-header ; Section 6.2 | entity-header ) ; Section 7.1 CRLF [ message-body ] ; Section 7.2
6.1 Status-Line
The first line of a Response message is the Status-Line, consisting of the protocol version followed by a numeric status code and its associated textual phrase, with each element separated by SP characters. No CR or LF is allowed except in the final CRLF sequence.
Fielding, et. al. Standards Track [Page 38]
RFC 2068 HTTP/1.1 January 1997
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
6.1.1 Status Code and Reason Phrase
The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request. These codes are fully defined in section 10. The Reason-Phrase is intended to give a short textual description of the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase is intended for the human user. The client is not required to examine or display the Reason- Phrase.
The first digit of the Status-Code defines the class of response. The last two digits do not have any categorization role. There are 5 values for the first digit:
o 1xx: Informational - Request received, continuing process
o 2xx: Success - The action was successfully received, understood, and accepted
o 3xx: Redirection - Further action must be taken in order to complete the request
o 4xx: Client Error - The request contains bad syntax or cannot be fulfilled
o 5xx: Server Error - The server failed to fulfill an apparently valid request
The individual values of the numeric status codes defined for HTTP/1.1, and an example set of corresponding Reason-Phrase's, are presented below. The reason phrases listed here are only recommended -- they may be replaced by local equivalents without affecting the protocol.
Status-Code = "100" ; Continue | "101" ; Switching Protocols | "200" ; OK | "201" ; Created | "202" ; Accepted | "203" ; Non-Authoritative Information | "204" ; No Content | "205" ; Reset Content | "206" ; Partial Content | "300" ; Multiple Choices | "301" ; Moved Permanently | "302" ; Moved Temporarily
Fielding, et. al. Standards Track [Page 39]
RFC 2068 HTTP/1.1 January 1997
| "303" ; See Other | "304" ; Not Modified | "305" ; Use Proxy | "400" ; Bad Request | "401" ; Unauthorized | "402" ; Payment Required | "403" ; Forbidden | "404" ; Not Found | "405" ; Method Not Allowed | "406" ; Not Acceptable | "407" ; Proxy Authentication Required | "408" ; Request Time-out | "409" ; Conflict | "410" ; Gone | "411" ; Length Required | "412" ; Precondition Failed | "413" ; Request Entity Too Large | "414" ; Request-URI Too Large | "415" ; Unsupported Media Type | "500" ; Internal Server Error | "501" ; Not Implemented | "502" ; Bad Gateway | "503" ; Service Unavailable | "504" ; Gateway Time-out | "505" ; HTTP Version not supported | extension-code
extension-code = 3DIGIT
Reason-Phrase = *<TEXT, excluding CR, LF>
HTTP status codes are extensible. HTTP applications are not required to understand the meaning of all registered status codes, though such understanding is obviously desirable. However, applications MUST understand the class of any status code, as indicated by the first digit, and treat any unrecognized response as being equivalent to the x00 status code of that class, with the exception that an unrecognized response MUST NOT be cached. For example, if an unrecognized status code of 431 is received by the client, it can safely assume that there was something wrong with its request and treat the response as if it had received a 400 status code. In such cases, user agents SHOULD present to the user the entity returned with the response, since that entity is likely to include human- readable information which will explain the unusual status.
Fielding, et. al. Standards Track [Page 40]
RFC 2068 HTTP/1.1 January 1997
6.2 Response Header Fields
The response-header fields allow the server to pass additional information about the response which cannot be placed in the Status- Line. These header fields give information about the server and about further access to the resource identified by the Request-URI.
response-header = Age ; Section 14.6 | Location ; Section 14.30 | Proxy-Authenticate ; Section 14.33 | Public ; Section 14.35 | Retry-After ; Section 14.38 | Server ; Section 14.39 | Vary ; Section 14.43 | Warning ; Section 14.45 | WWW-Authenticate ; Section 14.46
Response-header field names can be extended reliably only in combination with a change in the protocol version. However, new or experimental header fields MAY be given the semantics of response- header fields if all parties in the communication recognize them to be response-header fields. Unrecognized header fields are treated as entity-header fields.
7 Entity
Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or response status code. An entity consists of entity-header fields and an entity-body, although some responses will only include the entity-headers.
In this section, both sender and recipient refer to either the client or the server, depending on who sends and who receives the entity.
7.1 Entity Header Fields
Entity-header fields define optional metainformation about the entity-body or, if no body is present, about the resource identified by the request.
Fielding, et. al. Standards Track [Page 41]
RFC 2068 HTTP/1.1 January 1997
entity-header = Allow ; Section 14.7 | Content-Base ; Section 14.11 | Content-Encoding ; Section 14.12 | Content-Language ; Section 14.13 | Content-Length ; Section 14.14 | Content-Location ; Section 14.15 | Content-MD5 ; Section 14.16 | Content-Range ; Section 14.17 | Content-Type ; Section 14.18 | ETag ; Section 14.20 | Expires ; Section 14.21 | Last-Modified ; Section 14.29 | extension-header
extension-header = message-header
The extension-header mechanism allows additional entity-header fields to be defined without changing the protocol, but these fields cannot be assumed to be recognizable by the recipient. Unrecognized header fields SHOULD be ignored by the recipient and forwarded by proxies.
7.2 Entity Body
The entity-body (if any) sent with an HTTP request or response is in a format and encoding defined by the entity-header fields.
entity-body = *OCTET
An entity-body is only present in a message when a message-body is present, as described in section 4.3. The entity-body is obtained from the message-body by decoding any Transfer-Encoding that may have been applied to ensure safe and proper transfer of the message.
7.2.1 Type
When an entity-body is included with a message, the data type of that body is determined via the header fields Content-Type and Content- Encoding. These define a two-layer, ordered encoding model:
entity-body := Content-Encoding( Content-Type( data ) )
Content-Type specifies the media type of the underlying data. Content-Encoding may be used to indicate any additional content codings applied to the data, usually for the purpose of data compression, that are a property of the requested resource. There is no default encoding.
谁翻译了别忘了给我发一份 [email protected]

|