辗转相除法和移位相减法(Euclid & stein 算法) 给出Stein算法如下: - 如果A=0,B是最大公约数,算法结束
- 如果B=0,A是最大公约数,算法结束
- 设置A1 = A、B1=B和C1 = 1
- 如果An和Bn都是偶数,则An+1 =An /2,Bn+1 =Bn /2,Cn+1 =Cn *2(注意,乘2只要把整数左移一位即可,除2只要把整数右移一位即可)
- 如果An是偶数,Bn不是偶数,则An+1 =An /2,Bn+1 =Bn ,Cn+1 =Cn (很显然啦,2不是奇数的约数)
- 如果Bn是偶数,An不是偶数,则Bn+1 =Bn /2,An+1 =An ,Cn+1 =Cn (很显然啦,2不是奇数的约数)
- 如果An和Bn都不是偶数,则An+1 =|An -Bn|,Bn+1 =min(An,Bn),Cn+1 =Cn
- n++,转4
//greatest common divisor //by heaton //2005/03/11 #include <iostream> using namespace std; //交换a ,b的值 void swap(int& a1,int &b1) { int temp; temp=a1; a1=b1; b1=temp; } //辗转相除法 int gcd(int a,int b) { if(a < b)swap(a,b); int c=a%b; //cout<<"辗转相除法\n"<<"a b\n"<<a<<" "<<b<<"\n"; while(c!=0) { a=b; b=c; cout<<a<<" "<<b<<"\n"; c=a%b; } return b; } //移位相减法 int gcd2(int a,int b) { if(a < b)swap(a,b); //cout<<a<<" "<<b<<endl;//跟踪a,b的值 if(a==0)return b; if(b==0)return a; while(a != b) { if(( (a&1) == 0 ) && ( (b&1) == 0 )){ return 2*gcd2(a/2,b/2); //a,b are even numbers }else if(( (a&1) == 1 ) && ( (b&1) == 0)){ return gcd2(a,b/2); //a is odd number , b is even number }else if(((a&1) == 0 ) && ( (b&1) == 1) ){ return gcd2(a/2,b);//a....even ;b ...odd ... }else if(((a&1) == 1 ) && ((b&1) == 1)){ return gcd2(b,(a-b)); //a,b are odd numbers } } return b; }
//通过递归调用求n个数的最大公约数 int ngcd(int a[],int n) { if (n==1) return a[0]; else return gcd2(a[n-1],ngcd(a,n-1)); } int main() { int m=gcd(15,25); cout<<m<<"\n 移位相减法\na b\n"; int n=gcd2(15,20); cout<<n<<"\n the common divisor of array {450,90,15,45} \n"; int a[]={450,90,15,45};//应该先按升序对数组排序 int x=ngcd(a,4); cout<<" value:"<<x<<endl;///?????? return 0; }

|