回溯法也称为试探法,该方法首放弃关于问题规模大小的限制,并将问题的候选解按某一顺序逐一枚举和试验.当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探.如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解.在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯.扩大当前候选解的规模,并继续试探的过程成为向前试探. 为了确保程序能够终止,调整时,必须保证曾被放弃过的填数序列不被再次试验,即要求按某种有序模型生成填数序列.给解的候选者设定一个被检验的顺序,按这个顺序逐一生成候选者并检验. 对于迷宫问题,我想用回溯法的难点就在如何为解空间排序,以确保曾被放弃过的填数序列不被再次试验.在二维迷宫里面,从出发点开始,每个点按四邻域算,按照右,上,左,下的顺序搜索下一落脚点,有路则进,无路即退,前点再从下一个方向搜索,即可构成一有序模型.下表即迷宫 { 1,1,1,1,1,1,1,1,1,1, 0,0,0,1,0,0,0,1,0,1, 1,1,0,1,0,0,0,1,0,1, 1,0,0,0,0,1,1,0,0,1, 1,0,1,1,1,0,0,0,0,1, 1,0,0,0,1,0,0,0,0,0, 1,0,1,0,0,0,1,0,0,1, 1,0,1,1,1,0,1,1,0,1, 1,1,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,1,1,1} 从出发点开始,按序查找下一点所选点列构成有序数列,如果4个方向都搜遍都无路走,就回退,并置前点的方向加1,依此类推....... 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | x | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 2 | ... | y | 0 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | ... | c | 1 | 1 | 3 | 3 | 1 | 1 | 2 | 1 | ... |
#include<stdio.h> #include<stdlib.h> #define n1 10 #define n2 10 typedef struct node { int x; //存x坐标 int y; //存Y坐标 int c; //存该点可能的下点所在的方向,1表示向右,2向上,3向左,4向右 }linkstack; linkstack top[100]; //迷宫矩阵 int maze[n1][n2]={1,1,1,1,1,1,1,1,1,1, 0,0,0,1,0,0,0,1,0,1, 1,1,0,1,0,0,0,1,0,1, 1,0,0,0,0,1,1,0,0,1, 1,0,1,1,1,0,0,0,0,1, 1,0,0,0,1,0,0,0,0,0, 1,0,1,0,0,0,1,0,0,1, 1,0,1,1,1,0,1,1,0,1, 1,1,0,0,0,0,0,0,0,1, 1,1,1,1,1,1,1,1,1,1,}; int i,j,k,m=0; main() { //初始化top[],置所有方向数为左 for(i=0;i<n1*n2;i++) { top[i].c=1; } printf("the maze is:\n"); //打印原始迷宫矩阵 for(i=0;i<n1;i++) { for(j=0;j<n2;j++) printf(maze[i][j]?"* ":" "); printf("\n"); } i=0;top[i].x=1;top[i].y=0; maze[1][0]=2; /*回溯算法*/ do { if(top[i].c<5) //还可以向前试探 { if(top[i].x==5 && top[i].y==9) //已找到一个组合 { //打印路径 printf("The way %d is:\n",m++); for(j=0;j<=i;j++) { printf("(%d,%d)-->",top[j].x,top[j].y); } printf("\n"); //打印选出路径的迷宫 for(j=0;j<n1;j++) { for(k=0;k<n2;k++) { if(maze[j][k]==0) printf(" "); else if(maze[j][k]==2) printf("O "); else printf("* "); } printf("\n"); } maze[top[i].x][top[i].y]=0; top[i].c = 1; i--; top[i].c += 1; continue; } switch (top[i].c) //向前试探 { case 1: { if(maze[top[i].x][top[i].y+1]==0) { i++; top[i].x=top[i-1].x; top[i].y=top[i-1].y+1; maze[top[i].x][top[i].y]=2; } else { top[i].c += 1; } break; } case 2: { if(maze[top[i].x-1][top[i].y]==0) { i++; top[i].x=top[i-1].x-1; top[i].y=top[i-1].y; maze[top[i].x][top[i].y]=2; } else { top[i].c += 1; } break; } case 3: { if(maze[top[i].x][top[i].y-1]==0) { i++; top[i].x=top[i-1].x; top[i].y=top[i-1].y-1; maze[top[i].x][top[i].y]=2; } else { top[i].c += 1; } break; } case 4: { if(maze[top[i].x+1][top[i].y]==0) { i++; top[i].x=top[i-1].x+1; top[i].y=top[i-1].y; maze[top[i].x][top[i].y]=2; } else { top[i].c += 1; } break; } } } else //回溯 { if(i==0) return; //已找完所有解 maze[top[i].x][top[i].y]=0; top[i].c = 1; i--; top[i].c += 1; } }while(1); } 
|