其他语言

本类阅读TOP10

·基于Solaris 开发环境的整体构思
·使用AutoMake轻松生成Makefile
·BCB数据库图像保存技术
·GNU中的Makefile
·射频芯片nRF401天线设计的分析
·iframe 的自适应高度
·BCB之Socket通信
·软件企业如何实施CMM
·入门系列--OpenGL最简单的入门
·WIN95中日志钩子(JournalRecord Hook)的使用

分类导航
VC语言Delphi
VB语言ASP
PerlJava
Script数据库
其他语言游戏开发
文件格式网站制作
软件工程.NET开发
CSA

作者:未知 来源:月光软件站 加入时间:2005-2-28 月光软件站

 

1.1 Aim of this Assignment

 

To show how the inputs to an adder circuit may be modified to make the resulting circuit perform other useful functions.

 

1.2Outline Circuit of the Device

 

The figure below shows a multi-bit adder having inputs A( a number), B(a number), and C0( a single bit). The adder forms an output, F, where F=A plus B plus C0. T is also a number, and Cin, M1 and M0 are each single bits. Two logic circuits generate outputs B and C0 as shown.

 

 

Adder

 A                    B

                        C0

              F

Logic

Logic

M1

M2

 A

 T

Cin

 


                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 


(figure 1)

 

 

2.1 Task

 

Obtain Boolean expressions for the two logic circuits such that the output F is according to the following table. Here, Bi(Ti, M1, M0) and C0(Cin, M1, M0).

 

M1   M0

    F

0     0

A plus T

0     1

A minus T

1     0

A - 1

1     1

A+1

 

(table 1.1)

 

Here, F = A plus B plus C0. While Bi = (Ti, M1, M0) and C0(Cin, M1, M0), we can finish table 1.1 like below. F=A plus Bi and C.

 

M1   M0

    F

     Bi

     C0

0     0

A plus T

Ti

0

0     1

A minus T

Not Ti

1

1     0

A - 1

1

0

1     1

A+1

0

1

                                                                                                                                                                 (table 1.2)

 

 

i) A logic expression that relates bit Bi to bit Ti and M1 and M0.

 

From figure 1.1,we can see:

  Here,

M1  M0  Ti           Bi

0     0     0            0

0     0     1            1

0     1     0            1

0     1     1            0

1     0     0            1

1     0     1            1

1     1     0            0

1     1     1            0

 

                                                 (table 1.3)

 

From the table1.3, we can draw a map for function Bi

.

Bi

M1

Ti

M0

 


                                  

0

1

0

1

1

0

0

1

 

 

                            (table 1.4)

 

 

 

 

From the table 1.4, here Boolean Expression for Bi.

Bi = M1M0’ + TiM0’ + Ti’M1’M0

(  Ti’  =  not Ti,

M1’  =  not M1,

M0’  =  not M0.)

 

Here, we can prove it:

 

M1M0’

TiM0’

Ti’M1’M0

M1   M0

    F

     Bi

   0  1

   Ti  1

 Ti’  1  0

0     0

A plus T

Ti

   0  1

   Ti  0

 Ti’  1  1

0     1

A minus T

Not Ti

   1  1

   Ti  1

 Ti’  0  0

1     0

A - 1

1

   1  0

   Ti  0

 Ti’  0  1

1     1

A+1

0

 

(Table 1.5)

 

ii) A logic expression that relates C0 to Cin and M1 and M0.

 

       While C0(Cin, M1, M0), we know that C0 depends on Cin and M1 and M0. From the figure 1.1, we can see:

 

 

M1  M0  Cin         C0

0     0     0            0

0     0     1            0

0     1     0            1

0     1     1            1

1     0     0            0

1     0     1            0

1     1     0            1

1     1     1            1

 

                                                 (table 1.7)

 

From the table 1.7,  we can draw a map for function C0.

C0

M1

Cin

M0

 

 


                                  

0

1

1

0

0

1

1

0

 

 

(table 1.8)

 

From the table 1.8, we find the Boolean Expression for C0:

C0 = M0.

Here we can prove it :

 

M1   M0

    F

     C0

0     0

A plus T

0

0     1

A minus T

1

1     0

A - 1

0

1     1

A+1

1

 

 

 

3.1 Conclusion:

 

In this assignment, we mainly aim on how an adder circuit maybe modified to obtain different function. By finding out the logical expression of Bi and C0, we can see how F relates to the states of inputs M1, M0, Ti and C0. F= A +( M1M0’ + TiM0’ + Ti’M1’M0) + M0.

 




相关文章

相关软件