Problem:
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
is in the lower left corner:
9 2 -4 1 -1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Input:
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Output:
15
Solution:
// 声明:本代码仅供学习之用,请不要作为个人的成绩提交。 // http://blog.csdn.net/mskia // email: [email protected]
#include <iostream.h>
const int N=100;
int array[N][N];
int main( void ) { int n; cin >> n; for( int i = 0 ; i < n ; ++i ) { for( int j = 0 ; j < n ; ++j ) { cin >> array[ i ][ j ] ; } }
int sum = maxSum2 ( n ); cout << sum << endl; return 0; }
int maxSum( int n , int *p ) { int sum = 0 , b = 0; for( int i = 0 ; i < n ; ++i ) { if ( b > 0 ) { b += * ( p + i ) ; } else { b = * ( p + i ) ; }
if ( b > sum ) { sum = b; } } return sum; }
int maxSum2( int n ) { int sum = 0 ; int *b = new int [ n ]; for( int i = 0 ; i < n ; ++i ) { for( int k = 0 ; k < n ; ++k ) { *( b + k ) = array [ i ][ k ] ; } for( int j = i + 1 ; j < n ; ++j ) { for( int k = 0 ; k < n ; ++k ) { *( b + k ) += array [ j ][ k ] ; } } int max = maxSum( n , b ); if( max > sum ) { sum = max ; } } return sum; }

|