Question:
Let S = s1 s2 ¡ s2n be a well-formed string of parentheses. S can be encoded in two different ways:
- By an integer sequence P = p1 p2 ¡ pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
- By an integer sequence W = w1 w2 ¡ wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input:
The first line of the input contains a single integer t (1 ¡Ü t ¡Ü 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 ¡Ü n ¡Ü 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output:
The output consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input:
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output:
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
int main( void ) { int cases; cin >> cases; for ( int i = 0 ; i < cases; ++i ) { int n; cin >> n; char* par = new char[ n + n ]; int* pos = new int[ n ]; int lastc = 0 , c = 0 , count1 = 0; for ( int j = 0; j < n; ++j ) { cin >> c; for ( int k = 0; k < c - lastc; ++k ) { par[ count1 ] = '('; ++count1; } par[ count1 ] = ')'; pos[ j ] = count1; ++count1; lastc = c; } for ( int j = 0; j < n; ++j ) { if(j != 0) { cout << " "; }
int countleft = 0 , countright = 0; for ( int k = pos[ j ]; k >= 0; --k ) { switch ( par[ k ] ) { case '(': if ( ++countleft == countright ) { cout << countright; goto NEXTFORJ; } break; case ')': ++countright; break; } } cout << countright; NEXTFORJ:; } cout << endl; delete[] par; delete[] pos; }

|