HashMap是Java新Collection Framework中用来代替HashTable的一个实现,HashMap和HashTable的区别是: HashMap是未经同步的,而且允许null值。HashTable继承Dictionary,而且使用了Enumeration,所以被建议不要使用。 HashMap的声明如下: public class HashMap extends AbstractMap implements Map, Cloneable,Serializable  有关AbstractMap:http://blog.csdn.net/treeroot/archive/2004/09/20/110343.aspx  有关Map:http://blog.csdn.net/treeroot/archive/2004/09/20/110331.aspx  有关Cloneable:http://blog.csdn.net/treeroot/archive/2004/09/07/96936.aspx  这个类比较复杂,这里只是重点分析了几个方法,特别是后面涉及到很多内部类都没有解释 不过都比较简单。 
static final int DEFAULT_INITIAL_CAPACITY = 16; 默认初始化大小 
static final int MAXIMUM_CAPACITY = 1 << 30; 最大初始化大小 
static final float DEFAULT_LOAD_FACTOR = 0.75f; 默认加载因子 
transient Entry[] table; 一个Entry类型的数组,数组的长度为2的指数。 
transient int size; 映射的个数 
int threshold; 下一次扩容时的值 
final float loadFactor; 加载因子 
transient volatile int modCount; 修改次数 
public HashMap(int initialCapacity, float loadFactor) {    if (initialCapacity < 0)       throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);     if (initialCapacity > MAXIMUM_CAPACITY)       initialCapacity = MAXIMUM_CAPACITY;     if (loadFactor <= 0 || Float.isNaN(loadFactor))       throw new IllegalArgumentException("Illegal load factor: " +loadFactor);     int capacity = 1;    while (capacity < initialCapacity)      capacity <<= 1;     this.loadFactor = loadFactor;     threshold = (int)(capacity * loadFactor);     table = new Entry[capacity];     init(); } 
public HashMap(int initialCapacity) {     this(initialCapacity, DEFAULT_LOAD_FACTOR); } 
public HashMap() {     this.loadFactor = DEFAULT_LOAD_FACTOR;     threshold = (int)(DEFAULT_INITIAL_CAPACITY);       注意:这里应该是一个失误! 应该是:threshold =(int)(DEFAULT_INITIAL_CAPACITY * loadFactor);     table = new Entry[DEFAULT_INITIAL_CAPACITY];     init();  } 
public HashMap(Map m) {     this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY),                                   DEFAULT_LOAD_FACTOR);     putAllForCreate(m);  } 
void init() {} 
static final Object NULL_KEY = new Object(); 
static Object maskNull(Object key){     return (key == null ? NULL_KEY : key); } 
static Object unmaskNull(Object key) {    return (key == NULL_KEY ? null : key); } 
static int hash(Object x) {    int h = x.hashCode();     h += ~(h << 9);    h ^= (h >>> 14);    h += (h << 4);    h ^= (h >>> 10); return h;  } 在HashTable中没有这个方法,也就是说HashTable中是直接用对象的hashCode值,但是HashMap做了改进 用这个算法来获得哈希值。 
static boolean eq(Object x, Object y) {    return x == y || x.equals(y); } 
static int indexFor(int h, int length) {    return h & (length-1); } 根据哈希值和数组的长度来返回该hash值在数组中的位置,只是简单的与关系。 
public int size() {    return size;  } 
public boolean isEmpty() {    return size == 0;  } 
public Object get(Object key) {    Object k = maskNull(key);     int hash = hash(k);     int i = indexFor(hash, table.length);    Entry e = table[i];     while (true) {      if (e == null) return e;       if (e.hash == hash && eq(k, e.key)) return e.value;       e = e.next;    } } 这个方法是获取数据的方法,首先获得哈希值,这里把null值掩饰了,并且hash值经过函数hash()修正。 然后计算该哈希值在数组中的索引值。如果该索引处的引用为null,表示HashMap中不存在这个映射。 否则的话遍历整个链表,这里找到了就返回,如果没有找到就遍历到链表末尾,返回null。这里的比较是这样的:e.hash==hash && eq(k,e.key) 也就是说如果hash不同就肯定认为不相等,eq就被短路了,只有在 hash相同的情况下才调用equals方法。现在我们该明白Object中说的如果两个对象equals返回true,他们的 hashCode应该相同的道理了吧。假如两个对象调用equals返回true,但是hashCode不一样,那么在HashMap 里就认为他们不相等。 
public boolean containsKey(Object key) {    Object k = maskNull(key);     int hash = hash(k);    int i = indexFor(hash, table.length);    Entry e = table[i];     while (e != null) {      if (e.hash == hash && eq(k, e.key)) return true;      e = e.next;    }   return false;  } 这个方法比上面的简单,先找到哈希位置,再遍历整个链表,如果找到就返回true。 Entry getEntry(Object key) {     Object k = maskNull(key);     int hash = hash(k);     int i = indexFor(hash, table.length);     Entry e = table[i];     while (e != null && !(e.hash == hash && eq(k, e.key)))       e = e.next;    return e;  } 这个方法根据key值返回Entry节点,也是先获得索引位置,再遍历链表,如果没有找到返回的是null。 
public Object put(Object key, Object value) {     Object k = maskNull(key);    int hash = hash(k);    int i = indexFor(hash, table.length);     for (Entry e = table[i]; e != null; e = e.next) {       if (e.hash == hash && eq(k, e.key)) {        Object oldValue = e.value;         e.value = value;        e.recordAccess(this);        return oldValue;      }     }    modCount++;     addEntry(hash, k, value, i);     return null; } 首先获得hash索引位置,如果该位置的引用为null,那么直接插入一个映射,返回null。如果此处的引用不是null,必须遍历链表,如果找到一个相同的key,那么就更新该value,同时返回原来的value值。如果遍历完了没有找到,说明该key值不存在,还是插入一个映射。如果hash值足够离散的话,也就是说该索引没有被使用的话,那么不不用遍历链表了。相反,如果hash值不离散,极端的说如果是常数的话,所有的映射都会在这一个链表上,效率会极其低下。这里举一个最简单的例子,写两 个不同的类作为key插入到HashMap中,效率会远远不同。 class Good{   int i;   public Good(int i){    this.i=i;   }   public boolean equals(Object o){    return (o instanceof Good) && (this.i==((Good)o).i)   }   public int hashCode(){    return i;   } }  class Bad{   int i;   public Good(int i){     this.i=i;   }   public boolean equals(Object o){     return (o instanceof Good) && (this.i==((Good)o).i)   }   public int hashCode(){    return 0;   } }  执行代码: Map m1=new HashMap(); Map m2=new HashMap();  for(int i=0;i<100;i++){   m1.put(new Good(i),new Integer(i)); //这里效率非常高 } for(int i=0;i<100;i++){   m2.put(new Bad(i),new Integer(i)); //这里几乎要崩溃 }  上面的是两个非常极端的例子,执行一下就知道差别有多大。 
private void putForCreate(Object key, Object value) {     Object k = maskNull(key);     int hash = hash(k);     int i = indexFor(hash, table.length);    for (Entry e = table[i]; e != null; e = e.next) {       if (e.hash == hash && eq(k, e.key)) {         e.value = value;          return;       }    }    createEntry(hash, k, value, i);  } 
void putAllForCreate(Map m) {     for (Iterator i = m.entrySet().iterator(); i.hasNext(); ) {      Map.Entry e = (Map.Entry) i.next();       putForCreate(e.getKey(), e.getValue());    } } 上面的两个方法是被构造函数和clone方法调用的。 
void resize(int newCapacity) {     Entry[] oldTable = table;    int oldCapacity = oldTable.length;     if (size < threshold || oldCapacity > newCapacity)       return;     Entry[] newTable = new Entry[newCapacity];     transfer(newTable);     table = newTable;    threshold = (int)(newCapacity * loadFactor);  } 这个方法在需要的时候重新分配空间,相当于ArrayList的ensureCapacity方法,不过这个更加复杂。
  
void transfer(Entry[] newTable) {    Entry[] src = table;    int newCapacity = newTable.length;     for (int j = 0; j < src.length; j++) {      Entry e = src[j];       if (e != null) {        src[j] = null;         do {            Entry next = e.next;           int i = indexFor(e.hash, newCapacity);           e.next = newTable[i];           newTable[i] = e;            e = next;        } while (e != null);       }    } } 遍历原来的数组,如果该Entry不是null的话,说明有映射,然后遍历这个链表,把所有的映射插入到新的数组中,注意这里要从新计算索引位置。 
public void putAll(Map t) {     int n = t.size();     if (n == 0)       return;     if (n >= threshold) {      n = (int)(n / loadFactor + 1);       if (n > MAXIMUM_CAPACITY)         n = MAXIMUM_CAPACITY;       int capacity = table.length;       while (capacity < n) capacity <<= 1;         resize(capacity);    }    for (Iterator i = t.entrySet().iterator(); i.hasNext(); ) {       Map.Entry e = (Map.Entry) i.next();       put(e.getKey(), e.getValue());     } } 这个方法先确定是否需要扩大空间,然后循环调用put方法。 
public Object remove(Object key) {     Entry e = removeEntryForKey(key);     return (e == null ? e : e.value);  } 
Entry removeEntryForKey(Object key) {    Object k = maskNull(key);    int hash = hash(k);    int i = indexFor(hash, table.length);    Entry prev = table[i];     Entry e = prev;     while (e != null) {  如果e==null表示不存在      Entry next = e.next;       if (e.hash == hash && eq(k, e.key)) {         modCount++;         size--;         if (prev == e)           table[i] = next; 链表的第一个元素就是要删除的,这里最好加一句 e.next=null.        else           prev.next = next; 存在担不是链表的第一个元素, 这里最好加一句 e.next=null.        e.recordRemoval(this);         return e;      }      prev = e;      e = next;    }    return e;   这里其实就是return null;  } 这个方法其实也不复杂,也是遍历链表,这里建议加一句e.next=null,可以改为 if(prev==e)   table[i]=next; else   prev.next=next; e.next=null; 这一句是多加的,可以提高效率。 这里简单说明我的看法: 因为e是被删除的节点,删除它其实就是指向它的指针指向它的后面一个节点。所以e可以作为GC回收的对象。 可以e还有一个next指针指向我们的数据,如果e没有被回收。而且此时e.next指向的节点也变为没用的了,但是 却有一个它的引用(e.next),所以虽然e的下一个节点没用了,但是却不能作为GC回收的对象,除非e先被回收。 虽然不一定会引起很大的问题,但是至少会影响GC的回收效率。就像数据库中的外键引用一样,删除起来很麻烦呀。  
Entry removeMapping(Object o) {     if (!(o instanceof Map.Entry))      return null;     Map.Entry entry = (Map.Entry)o;    Object k = maskNull(entry.getKey());    int hash = hash(k);     int i = indexFor(hash, table.length);    Entry prev = table[i];    Entry e = prev;     while (e != null) {      Entry next = e.next;      if (e.hash == hash && e.equals(entry)) {        modCount++;        size--;         if (prev == e)           table[i] = next;        else          prev.next = next;         e.recordRemoval(this);        return e;       }        prev = e;       e = next;    }    return e; } 这个方法和上面的一样。 
public void clear() {    modCount++;    Entry tab[] = table;     for (int i = 0; i < tab.length; i++)      tab[i] = null;     size = 0; } 同样可以改进 
public boolean containsValue(Object value) {    if (value == null)       return containsNullValue();    Entry tab[] = table;    for (int i = 0; i < tab.length ; i++)       for (Entry e = tab[i] ; e != null ; e = e.next)         if (value.equals(e.value)) return true;    return false; } 
private boolean containsNullValue() {    Entry tab[] = table;     for (int i = 0; i < tab.length ; i++)       for (Entry e = tab[i] ; e != null ; e = e.next)        if (e.value == null) return true;     return false;  } 
public Object clone() {    HashMap result = null;     try {       result = (HashMap)super.clone();    }    catch (CloneNotSupportedException e) { // assert false; }    result.table = new Entry[table.length];    result.entrySet = null;    result.modCount = 0;     result.size = 0;     result.init();     result.putAllForCreate(this);    return result;  }  
static class Entry implements Map.Entry {     final Object key;     Object value;     final int hash;     Entry next;    Entry(int h, Object k, Object v, Entry n) {      value = v;       next = n;      key = k;      hash = h;    }    public Object getKey() {      return unmaskNull(key);     }    public Object getValue() {       return value;     }    public Object setValue(Object newValue) {        Object oldValue = value;       value = newValue;       return oldValue;    }    public boolean equals(Object o) {       if (!(o instanceof Map.Entry)) return false;      Map.Entry e = (Map.Entry)o;       Object k1 = getKey();      Object k2 = e.getKey();      if (k1 == k2 || (k1 != null && k1.equals(k2))) {        Object v1 = getValue();         Object v2 = e.getValue();         if (v1 == v2 || (v1 != null && v1.equals(v2))) return true;       }      return false;      }     public int hashCode() {       return (key==NULL_KEY ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode());      }     public String toString() {       return getKey() + "=" + getValue();      }     void recordAccess(HashMap m) { }      void recordRemoval(HashMap m) { }  } 一个静态内部类 
void addEntry(int hash, Object key, Object value, int bucketIndex) {      table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);     if (size++ >= threshold)        resize(2 * table.length);  } 注意这个方法,插入连表的头。 可以写成这样更好理解: Entry oldHead=table[bucketIndex]; Entry newHead = new Entry(hash,key,value,oldHead); table[bucketIndex]=newHead; 
void createEntry(int hash, Object key, Object value, int bucketIndex) {    table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);     size++; } 
private abstract class HashIterator implements Iterator {     Entry next;    int expectedModCount;     int index;     Entry current;     HashIterator() {       expectedModCount = modCount;       Entry[] t = table;      int i = t.length;      Entry n = null;      if (size != 0) {         while (i > 0 && (n = t[--i]) == null) ;      }       next = n;       index = i;    }    public boolean hasNext() {       return next != null;     }    Entry nextEntry() {      if (modCount != expectedModCount)         throw new ConcurrentModificationException();      Entry e = next;     if (e == null)         throw new NoSuchElementException();       Entry n = e.next;       Entry[] t = table;      int i = index;       while (n == null && i > 0)          n = t[--i]; index = i;      next = n;       return current = e;     }    public void remove() {       if (current == null)         throw new IllegalStateException();      if (modCount != expectedModCount)        throw new ConcurrentModificationException();      Object k = current.key;      current = null;      HashMap.this.removeEntryForKey(k);      expectedModCount = modCount;     } } 
private class ValueIterator extends HashIterator {     public Object next() {       return nextEntry().value;    } } 
private class KeyIterator extends HashIterator {     public Object next() {       return nextEntry().getKey();    } } 
private class EntryIterator extends HashIterator {     public Object next() {       return nextEntry();    } } 
Iterator newKeyIterator() {    return new KeyIterator();  } 
Iterator newValueIterator() {     return new ValueIterator(); }  
Iterator newEntryIterator() {      return new EntryIterator(); }  
private transient Set entrySet = null;  
public Set keySet() {     Set ks = keySet;     return (ks != null ? ks : (keySet = new KeySet())); } 
private class KeySet extends AbstractSet {     public Iterator iterator() {      return newKeyIterator();    }    public int size() {       return size;     }    public boolean contains(Object o) {       return containsKey(o);    }    public boolean remove(Object o) {       return HashMap.this.removeEntryForKey(o) != null;    }    public void clear() {       HashMap.this.clear();    } } 
public Collection values() {     Collection vs = values; return (vs != null ? vs : (values = new Values())); } 
private class Values extends AbstractCollection {    public Iterator iterator() {      return newValueIterator();     }     public int size() {       return size;     }    public boolean contains(Object o) {      return containsValue(o);    }    public void clear() {      HashMap.this.clear();     } } 
public Set entrySet() {     Set es = entrySet;     return (es != null ? es : (entrySet = new EntrySet())); } 
private class EntrySet extends AbstractSet {    public Iterator iterator() {      return newEntryIterator();     }    public boolean contains(Object o) {       if (!(o instanceof Map.Entry))         return false;       Map.Entry e = (Map.Entry)o;      Entry candidate = getEntry(e.getKey());      return candidate != null && candidate.equals(e);    }    public boolean remove(Object o) {      return removeMapping(o) != null;     }    public int size() {      return size;    }    public void clear() {      HashMap.this.clear();    } } 
private void writeObject(java.io.ObjectOutputStream s) throws IOException {     s.defaultWriteObject();    s.writeInt(table.length);    s.writeInt(size);    for (Iterator i = entrySet().iterator(); i.hasNext(); ) {      Map.Entry e = (Map.Entry) i.next();       s.writeObject(e.getKey());       s.writeObject(e.getValue());    } } 
private static final long serialVersionUID = 362498820763181265L; 
private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException {     s.defaultReadObject();     int numBuckets = s.readInt();    table = new Entry[numBuckets];     init();     size = s.readInt(); for (int i=0;    for (int i=0; i<size; i++) {      Object key = s.readObject();      Object value = s.readObject();       putForCreate(key, value);    } } 
 int capacity() {    return table.length; } float loadFactor() {    return loadFactor; }  
 
  |